p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C23⋊3D4, C24⋊2C22, C23.10C23, C22.28C24, C2.32+ 1+4, C4⋊D4⋊5C2, C4⋊C4⋊3C22, C22≀C2⋊2C2, (C22×D4)⋊6C2, (C2×D4)⋊13C22, C22⋊C4⋊3C22, (C2×C4).16C23, (C22×C4)⋊7C22, C22.20(C2×D4), C2.13(C22×D4), C22.D4⋊2C2, (C2×C22⋊C4)⋊12C2, SmallGroup(64,215)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊3D4
G = < a,b,c,d,e | a2=b2=c2=d4=e2=1, ab=ba, eae=ac=ca, ad=da, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 321 in 173 conjugacy classes, 81 normal (7 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C24, C24, C2×C22⋊C4, C22≀C2, C4⋊D4, C22.D4, C22×D4, C23⋊3D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, C23⋊3D4
Character table of C23⋊3D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ17 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
(1 10)(2 11)(3 12)(4 9)(5 15)(6 16)(7 13)(8 14)
(1 3)(2 16)(4 14)(5 7)(6 11)(8 9)(10 12)(13 15)
(1 13)(2 14)(3 15)(4 16)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 2)(3 4)(5 9)(6 12)(7 11)(8 10)(13 14)(15 16)
G:=sub<Sym(16)| (1,10)(2,11)(3,12)(4,9)(5,15)(6,16)(7,13)(8,14), (1,3)(2,16)(4,14)(5,7)(6,11)(8,9)(10,12)(13,15), (1,13)(2,14)(3,15)(4,16)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,2)(3,4)(5,9)(6,12)(7,11)(8,10)(13,14)(15,16)>;
G:=Group( (1,10)(2,11)(3,12)(4,9)(5,15)(6,16)(7,13)(8,14), (1,3)(2,16)(4,14)(5,7)(6,11)(8,9)(10,12)(13,15), (1,13)(2,14)(3,15)(4,16)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,2)(3,4)(5,9)(6,12)(7,11)(8,10)(13,14)(15,16) );
G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,15),(6,16),(7,13),(8,14)], [(1,3),(2,16),(4,14),(5,7),(6,11),(8,9),(10,12),(13,15)], [(1,13),(2,14),(3,15),(4,16),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,2),(3,4),(5,9),(6,12),(7,11),(8,10),(13,14),(15,16)]])
G:=TransitiveGroup(16,87);
(5 12)(6 9)(7 10)(8 11)
(2 14)(4 16)(5 12)(7 10)
(1 13)(2 14)(3 15)(4 16)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 7)(2 6)(3 5)(4 8)(9 14)(10 13)(11 16)(12 15)
G:=sub<Sym(16)| (5,12)(6,9)(7,10)(8,11), (2,14)(4,16)(5,12)(7,10), (1,13)(2,14)(3,15)(4,16)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,7)(2,6)(3,5)(4,8)(9,14)(10,13)(11,16)(12,15)>;
G:=Group( (5,12)(6,9)(7,10)(8,11), (2,14)(4,16)(5,12)(7,10), (1,13)(2,14)(3,15)(4,16)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,7)(2,6)(3,5)(4,8)(9,14)(10,13)(11,16)(12,15) );
G=PermutationGroup([[(5,12),(6,9),(7,10),(8,11)], [(2,14),(4,16),(5,12),(7,10)], [(1,13),(2,14),(3,15),(4,16),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,7),(2,6),(3,5),(4,8),(9,14),(10,13),(11,16),(12,15)]])
G:=TransitiveGroup(16,119);
C23⋊3D4 is a maximal subgroup of
C23⋊2SD16 C23.5D8 C24.16D4 C24.28D4 C24.31D4 C24.33D4 C24.36D4 C22.38C25 C22.73C25 C22.74C25 C22.79C25 C22.80C25 C4⋊2+ 1+4 C42⋊C23 C22.122C25 C22.123C25 C22.134C25 C22.149C25
C23⋊D4p: C23⋊D8 C23⋊4D12 C23⋊3D20 C23⋊3D28 ...
C24⋊D2p: C24⋊D4 C24⋊C23 C24⋊7D6 C24⋊12D6 C24⋊3D10 C24⋊8D10 C24⋊2D14 C24⋊7D14 ...
C2p.2+ 1+4: C22.48C25 C22.94C25 C22.126C25 C22.131C25 C22.132C25 C22.147C25 C6.372+ 1+4 C6.1202+ 1+4 ...
C23⋊3D4 is a maximal quotient of
C24.90D4 C24.91D4 C23.203C24 C24.195C23 C24.198C23 C24.94D4 C24.95D4 C24.96D4 C23.434C24 C23.439C24 C23.443C24 C23.461C24 C24.583C23 C23.479C24 C23.483C24 C23.491C24 C23.500C24 C23.502C24 C24.587C23 C24.97D4 C24⋊5Q8 C23.527C24 C23.530C24 C23.535C24 C24.374C23 C24.592C23 C23.556C24 C23.559C24 C24.377C23 C24.378C23 C23.568C24 C23.569C24 C23.571C24 C23.573C24 C23.578C24 C25⋊C22 C24.389C23 C23.584C24 C24.393C23 C24.395C23 C23.597C24 C24.406C23 C24.407C23 C23.608C24 C24.411C23 C23.617C24 C23.624C24 C24.420C23 C24.421C23 C23.630C24 C23.631C24 C23.632C24 C23.633C24 C23.634C24 C24.459C23 C23.714C24 C23.715C24 C23.716C24 C24.462C23
C24⋊D2p: C24⋊7D4 C24⋊8D4 C24⋊9D4 C24⋊10D4 C24⋊11D4 C24⋊7D6 C24⋊12D6 C24⋊3D10 ...
C2p.2+ 1+4: C23⋊3D8 C23⋊4SD16 C24.121D4 C23⋊3Q16 C24.123D4 C24.124D4 C24.125D4 C24.126D4 ...
Matrix representation of C23⋊3D4 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,-1,0,0],[0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C23⋊3D4 in GAP, Magma, Sage, TeX
C_2^3\rtimes_3D_4
% in TeX
G:=Group("C2^3:3D4");
// GroupNames label
G:=SmallGroup(64,215);
// by ID
G=gap.SmallGroup(64,215);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,217,650,188,579]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=e^2=1,a*b=b*a,e*a*e=a*c=c*a,a*d=d*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export